PRINCIPLES OF ANALYSIS TOPIC 2: PARTIALLY ORDERED SETS

PAUL L. BAILEY

Definition 1. A relation on a set A is a subset $\bowtie \subset A \times A$. We write $a_1 \bowtie a_2$ to mean $(a_1, a_2) \in \bowtie$.

Let A be a set, \bowtie a relation on A, and $B \subseteq A$. The relation \bowtie restricted to B is $\bowtie_B = \bowtie \cap (B \times B)$; then \bowtie_B is a relation on B which we may also denote by \bowtie .

Definition 2. A *partial order* on a set A is a relation \preccurlyeq satisfying

(PO1) $a \preccurlyeq a \text{ (reflexivity)}$

(PO2) $a \preccurlyeq b$ and $b \preccurlyeq a$ implies a = b (antisymmetry)

(PO3) $a \preccurlyeq b$ and $b \preccurlyeq c$ implies $a \preccurlyeq c$ (transitivity)

A partially ordered set (A, \preccurlyeq) is a set A together with a partial order \preccurlyeq on A.

Example 1. Let $\mathbb{N} = \{1, 2, 3, ...\}$ denote the set of natural numbers, and let \leq denote the standard order relation on \mathbb{N} . Then (\mathbb{N}, \leq) is a partially ordered set.

Example 2. Let X be a set and let $\mathcal{P}(X)$ denote the *power set* of X, that is, $\mathcal{P}(X)$ is the set of all subsets of X. Let \subseteq denote setwise containment. Then $(\mathcal{P}(X), \subseteq)$ is a partially ordered set.

Example 3. Let $n \in \mathbb{N}$ and let Div(n) denote the set of all positive integers which divide n. For $a, b \in \mathbb{N}$, say that a divides b, and write $a \mid b$, if b = am for some $m \in \mathbb{N}$. Then (Div(n), |) is a partially ordered set.

Example 4. Let (A, \preccurlyeq) be a partially ordered set and let $B \subseteq A$. Let \preccurlyeq also denote the restriction of \preccurlyeq to B. Then \preccurlyeq is a partial order on B, and (B, \preccurlyeq) is a partially ordered set.

Definition 3. Let (A, \preccurlyeq) and (B, \preccurlyeq) be partially ordered sets. An order morphism from A to B is a function $f: A \rightarrow B$ satisfying

$$a_1 \preccurlyeq a_2 \Rightarrow f(a_1) \preccurlyeq f(a_2)$$

for all $a_1, a_2 \in A$. An order isomorphism from A to B is a bijective order morphism $f : A \to B$ such that f^{-1} is also an order morphism. If there exists an order isomorphism from A to B, we say that A and B are *isomorphic* as partially ordered sets, and write $A \cong B$.

Example 5. Let $f : \mathbb{N} \to \mathbb{N}$ be given by f(n) = 2n + 3. Then f is an order morphism from (\mathbb{N}, \leq) to (\mathbb{N}, \leq) . We see that f is injective but is not surjective, so it is not an isomorphism.

Example 6. Let X and Y be sets and let $f : X \to Y$ be a function. This induces a function $F : \mathcal{P}(X) \to \mathcal{P}(X)$ which is an order morphism.

Date: November 11, 2005.

Example 7. The sets Div(24) and Div(30) each have eight elements, so there is a bijective function between them. However, they are not isomorphic. On the other hand, Div(105) also has eight elements, and $\text{Div}(30) \cong \text{Div}(105)$.

Example 8. Let $n \in \mathbb{N}$. Then *n* factors into the product of a finite number of primes, and it is possible to write

$$n = \prod_{i=1}^k p_i^{\alpha_i},$$

where p_i is prime for all i, and $1 \le \alpha_1 \le \alpha_2 \le \cdots \le \alpha_k$. Define the *prime shape* of n to be the ordered tuple $\sigma(n) = (\alpha_1, \ldots, \alpha_k)$. Then $\text{Div}(m) \cong \text{Div}(n)$ if and only if $\sigma(m) = \sigma(n)$.

Definition 4. A *total order* on a set A is a partial order \preccurlyeq with the additional property

(TO) $a \preccurlyeq b \text{ or } b \preccurlyeq a$.

A totally ordered set (A, \preccurlyeq) is a set A together with a total order \preccurlyeq on A.

Example 9. The real numbers \mathbb{R} , together with its standard ordering, is a totally ordered set.

Example 10. Let p be a prime number. Then (Div(p), |) is a totally ordered set.

Example 11. Two finite totally ordered sets are isomorphic if an only if they have the same number of elements.

Example 12. Any subset of a totally ordered set is totally ordered

Department of Mathematics and CSci, Southern Arkansas University $E\text{-}mail\ address:\ plbailey@saumag.edu$